

Scalar product and vector product

BSA

Definition

- $\vec{u}(x; y; z)$ and $\vec{v}(x'; y'z')$ are two vectors in space.
- ✓ The scalar product of two vectors is a real number.
- \checkmark Notation: \vec{u} , \vec{v}
- \checkmark Rule: $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos \theta$ where $\theta = (\hat{\vec{u}}; \hat{\vec{v}})$
- ✓ Analytic form: $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$

Properties

- 1 If $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$, then $\vec{u} \cdot \vec{v} = 0$
- $\mathbf{2} \ \vec{u}.\vec{v} = \vec{v}.\vec{u}$
- $(a\vec{u}) \cdot \vec{v} = \vec{u} \cdot (a\vec{v}) = a(\vec{u} \cdot \vec{v}) \text{ where } a \in \mathbb{R}.$
- $\mathbf{4} \ \vec{u}.(\vec{v} + \vec{w}) = \vec{u}.\vec{v} + \vec{u}.\vec{w}$
- **5** If \vec{u} . $\vec{v} = 0$ and $\vec{u} \neq \vec{0}$, $\vec{v} \neq \vec{0}$, then $(\vec{u}, \vec{v}) = \frac{\pi}{2}(2\pi)$

BSA BE SMATT ACADEMY

Norm of a vector

 $\vec{u}(x; y; z)$ and $\vec{v}(x'; y'z')$ are two vectors in space.

- $\mathbf{1} \vec{u}^2 = \left| |\vec{u}| \right|^2$
- **2** $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$

$$\vec{u}^{2} = \vec{u}.\vec{u} = ||\vec{u}|| \times ||\vec{u}|| \times \cos(\vec{u};\vec{u}) = ||\vec{u}||^{2} \times \cos 0 = ||\vec{u}||^{2}$$

$$\vec{u}^{2} = \vec{u}.\vec{u} = x \times x + y \times y + z \times z = x^{2} + y^{2} + z^{2}$$
So $||\vec{u}|| = \sqrt{x^{2} + y^{2} + z^{2}}$

Angle

 $\vec{u}(x; y; z)$ and $\vec{v}(x'; y'z')$ are two vectors in space.

$$\cos \theta = \cos(\vec{u}; \vec{v}) = \frac{\vec{u}.\vec{v}}{||\vec{u}|| \times ||\vec{v}||} = \frac{xx' + yy' + zz'}{\sqrt{x^2 + y^2 + z^2} \times \sqrt{x'^2 + y'^2 + z'^2}}$$

Example:

$$\vec{u}(2;3;1) \& \vec{v}(-1;2;3)$$

$$\vec{u}.\vec{v} = xx' + yy' + zz' = 2 \times (-1) + 3 \times 2 + 1 \times 3 = -2 + 6 + 3 = 7$$

$$||\vec{u}|| = \sqrt{x^2 + y^2 + z^2} = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14}$$

$$||\vec{v}|| = \sqrt{x'^2 + y'^2 + z'^2} = \sqrt{(-1)^2 + 2^2 + 3^2} = \sqrt{14}$$

$$\cos(\vec{u}; \vec{v}) = \frac{\vec{u}.\vec{v}}{||\vec{u}|| \times ||\vec{v}||} = \frac{7}{\sqrt{14} \times \sqrt{14}} = \frac{7}{14} = 0.5$$

BSA BE SMART ACADEMY

Application of scalar product

- 1 Scalar product is used to show that two vectors are orthogonal.
 - \vec{u} . $\vec{v} = 0$ and $\vec{u} \neq \vec{0}$, $\vec{v} \neq \vec{0}$
- 2 level surfaces:
 - > The plane:

A is a fixed point, \vec{u} is any vector.

The locus of a variable point M verifying $\vec{u} \cdot \overrightarrow{AM} = 0$ is the plane that passes through A and orthogonal to \vec{u} .

BSA BE SMART ACADEMY

Application of scalar product

- 1 Scalar product is used to show that two vectors are orthogonal.
 - $\vec{u}.\vec{v}=0$ and $\vec{u}\neq\vec{0}$, $\vec{v}\neq\vec{0}$
- 2 level surfaces:
 - > The sphere:

A and B are two fixed points.

The locus of a point M in space verifying $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0$ is the sphere with

diameter [AB].

BSA

Application of scalar product

Normal vector to a plane \vec{u} is a normal vector to a plane (ABC), if \vec{u} is orthogonal to the two non collinear vectors \overrightarrow{AB} and \overrightarrow{AC} .

